Black (Hole) Friday!

Black (Hole) Friday!

It’s Black Friday, but for us, it’s the annual Black Hole Friday! Today, we’ll post awesome images and information about black holes.

image

A black hole is a place in space where gravity pulls so much that even light cannot get out. The gravity is so strong because matter has been squeezed into a tiny space…sort of like all of those shoppers trying to fit into the department stores today.

Because no light can get out, people can’t see black holes. They are invisible. Space telescopes with special tools can help find black holes (sort of how those websites help you find shopping deals).

image

How big are black holes? Black holes can be big or small…just like the lines in all of the stores today. Scientists think the smallest black holes are as small as just one atom. These black holes are very tiny but have the mass of a large mountain! Mass is the amount of matter, or “stuff”, in an object.

image

So how do black holes form? Scientists think the smallest black holes formed when the universe began. Stellar black holes are made when the center of a very big star falls upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space. Scientists think supermassive black holes were made at the same time as the galaxy they are in.

For more fun facts and information about black holes, be sure to follow us on social media.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

7 years ago

Launching the Future of Space Communications

Our newest communications satellite, named the Tracking and Data Relay Satellite-M or TDRS-M, launches Aug. 18 aboard an Atlas V rocket from our Kennedy Space Center in Florida. It will be the 13th TDRS satellite and will replenish the fleet of satellites supporting the Space Network, which provides nearly continuous global communications services to more than 40 of our missions.

image

Communicating from space wasn’t always so easy. During our third attempt to land on the moon in 1970, the Apollo 13 crew had to abort their mission when the spacecraft’s oxygen tank suddenly exploded and destroyed much of the essential equipment onboard. Made famous in the movie ‘Apollo 13’ by Ron Howard and starring Tom Hanks, our NASA engineers on the ground talked to the crew and fixed the issue. Back in 1970 our ground crew could only communicate with their ground teams for 15 percent of their orbit – adding yet another challenge to the crew. Thankfully, our Apollo 13 astronauts survived and safely returned to Earth. 

image

Now, our astronauts don’t have to worry about being disconnected from their teams! With the creation of the TDRS program in 1973, space communications coverage increased rapidly from 15 percent coverage to 85 percent coverage. And as we’ve continued to add TDRS spacecraft, coverage zoomed to over 98 percent!

Launching The Future Of Space Communications

TDRS is a fleet of satellites that beam data from low-Earth-orbiting space missions to scientists on the ground. These data range from cool galaxy images from the Hubble Space Telescope to high-def videos from astronauts on the International Space Station! TDRS is operated by our Space Network, and it is thanks to these hardworking engineers and scientists that we can continuously advance our knowledge about the universe!  

image

What’s up next in space comm? Only the coolest stuff ever! LASER BEAMS. Our scientists are creating ways to communicate space data from missions through lasers, which have the ability to transfer more data per minute than typical radio-frequency systems. Both radio-frequency and laser comm systems send data at the speed of light, but with laser comm’s ability to send more data at a time through infrared waves, we can receive more information and further our knowledge of space.

image

How are we initiating laser comm? Our Laser Communications Relay Demonstration is launching in 2019! We’re only two short years away from beaming space data through lasers! This laser communications demo is the next step to strengthen this technology, which uses less power and takes up less space on a spacecraft, leaving more power and room for science instruments.

image

Watch the TDRS launch live online at 8:03 a.m. EDT on Aug. 18: https://www.nasa.gov/nasalive

Join the conversation on Twitter: @NASA_TDRS and @NASALasercomm!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Ion Propulsion…What Is It?

Ion thrusters are being designed for a wide variety of missions – from keeping communications satellites in the proper position to propelling spacecraft throughout our solar system. But, what exactly is ion propulsion and how does an ion thruster work? Great question! Let’s take a look:

image

Regular rocket engines: You take a gas and you heat it up, or put it under pressure, and you push it out of the rocket nozzle, and the action of the gas going out of the nozzle causes a reaction that pushes the spacecraft in the other direction.

Ion engines: Instead of heating the gas up or putting it under pressure, we give the gas xenon a little electric charge, then they’re called ions, and we use a big voltage to accelerate the xenon ions through this metal grid and we shoot them out of the engine at up to 90,000 miles per hour.

image

Something interesting about ion engines is that it pushes on the spacecraft as hard as a single piece of paper pushes on your hand while holding it. In the zero gravity, frictionless, environment of space, gradually the effect of this thrust builds up. Our Dawn spacecraft uses ion engines, and is the first spacecraft to orbit two objects in the asteroid belt between Mars and Jupiter.

To give you a better idea, at full throttle, it would take our Dawn spacecraft four days to accelerate from zero to sixty miles per hour. That may sounds VERY slow, but instead of thrusting for four days, if we thrust for a week or a year as Dawn already has for almost five years, you can build up fantastically high velocity.

image

Why use ion engines? This type of propulsion give us the maneuverability to go into orbit and after we’ve been there for awhile, we can leave orbit and go on to another destination and do the same thing.

As the commercial applications for electric propulsion grow because of its ability to extend the operational life of satellites and to reduce launch and operation costs, we are involved in work on two different ion thrusters of the future: the NASA Evolutionary Xenon Thruster (NEXT) and the Annular Engine. These new engines will help reduce mission cost and trip time, while also traveling at higher power levels.

Learn more about ion propulsion HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

Next Gen @ NASA: Celebrating National Intern Day

To celebrate National Intern Day, we asked interns to share how they got their internship and their perspective and advice to the next generation of prospective NASA interns.

Meet our interns and check out their suggestions for the next generation.

Sarah Kilpatrick, STDCE-2 Data Intern

Sarah is a summer Surface Tension Driven Convection Experiment Data Intern at NASA. Her inspiration for applying for an internship came from a passion for science from an early age. “I grew up in a family that liked, enjoyed and appreciated science and the fun of it all,” she recalls. “I grew up watching PBS, NOVA, and other science shows, so when I saw NASA had opportunities for students like me, I was very interested.” 

Sarah’s advice to the next generation of NASA interns is one of perseverance and resilience.

Nicholas Natsoulas, Attitude Control Engineering Intern

Nicholas is a summer Attitude Control Engineering Intern at NASA. He wants to contribute to scientific innovation and discovery. “Overall, what inspired me to apply and come to work here was to contribute to the scientific exploration of space while learning about unique perspectives and innovative space discoveries.”

Nicholas’s advice for prospective NASA interns is to make the most out of your time here and to be a curious and eager learner.

“Use all the resources that are at your center and ask questions about projects you are working on. Don’t be afraid to talk to your mentor about your plans for the future and ask for any advice you may need, as they are more than willing to help you during your time here,” says Nicholas.

One man standing at an office desk pointing at laptop screen and one man sitting on chair working from laptop.

Nicholas and his mentor, Brent Faller, are using software to inform design decisions on a variety of spacecraft.

Nylana Murphy, former Additive Manufacturing Engineering Intern

As an American Indian College Fund ambassador and a Navajo engineer, Nylana Murphy hopes her internship story will inspire others to pursue a career in aerospace.

After attending the American Indian Science Engineering Society Conference, Nylana secured an internship in the additive manufacturing research laboratory at NASA Marshall.

 “My internships have helped me get to where I am,” she says, “There is a career for everyone, where their dreams can become reality. Those dreams WILL become a reality.”

A Navajo woman sits with her hands clasped on her lap. She is wearing a black t-shirt with a NASA logo and a turquoise ring and bracelet.

You might be wondering: what happens after a NASA internship Here’s what two of our former interns did.

Loral O’Hara, Astronaut, former intern

Lorel interned at NASA JPL in 2003, and at NASA Goddard in 2004. She earned science degrees from both the University of Kansas and Purdue University.

As a research and project engineer, O’Hara reported for duty in August 2017 and completed two years of training as an Astronaut Candidate. She is projected to fly in Soyuz missions as a NASA astronaut soon.

If she could go back in time, Loral says she would tell her younger self to enjoy the opportunities that come her way—and never stop looking for new ones. “Enjoy the whole journey of…figuring out what it is that you like to do and exploring all different kinds of things.”

A woman is in a pool with a helmet and other protective gear on.

Jeff Carlson, Assembly, Test, Launch Operations Engineer

The “7 Minutes of Terror” video piqued Jeff Carlson’s interest in working at JPL. He thought, "That's the coolest thing I've ever heard of. I've got to go be a part of that in some way." While interning at the Jet Propulsion Laboratory, he worked on Starshade, a sunflower-shaped device used to block starlight in order to reveal planets orbiting a star. Later, he went on to work on the team tasked with assembling and testing the “head” and “neck” (officially called the Remote Sensing Mast) for the Mars 2020 rover.

A man stands next to a testbed version of the Mars 2020 rover. His hair is pulled back in a ponytail and he is wearing a white lab coat and gloves.

Want to join us in exploring the secrets of the universe? Visit intern.nasa.gov to learn more about open opportunities and requirements!

Make sure to follow us on Tumblr for your regular dose of space!

Credits: Isabel Rodriguez, Glenn Research Center intern and Claire O'Shea, Johnson Space Center intern


Tags
8 years ago

Asteroid Terms: Explained

There are interesting asteroid characters in our solar system, including an asteroid that has its own moon and even one that is shaped like a dog bone! Our OSIRIS-REx mission launches at 7:05 p.m. EDT today and will travel to asteroid Bennu.

image

Scientists chose Bennu as the target of the OSIRIS-REx mission because of its composition, size and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.

Our OSIRIS-REx mission will travel to Bennu and bring a small sample back to Earth for study.

image

When talking about asteroids, there are some terms scientists use that might not be in your typical vocabulary…but we’ll help with that!

Here are a few terms you should know:

Orbital Eccentricity: This number describes the shape of an asteroid’s orbit by how elliptical it is. For asteroids in orbit around the sun, eccentricity is a number between 0 and 1, with 0 being a perfectly circular orbit and 0.99 being a highly elliptical orbit.

Inclination: The angle, in degrees, of how tilted an asteroid’s orbit is compared to another plane of reference, usually the plane of the Earth’s orbit around the sun.

Orbital Period: The number of days it takes for an asteroid to revolve once around the sun. For example, the Earth’s orbital period is 365 days.

Perihelion Distance: The distance between an asteroid and the sun when the asteroid is closest to the sun.

Aphelion Distance: The distance between the asteroid and the sun when the asteroid is farthest away from the sun.

Astronomical unit: A distance unit commonly used to describe orbits of objects around the sun. The distance from the Earth to the sun is one astronomical unit, or 1 AU, equivalent to about 93 million miles or 150 million kilometers.

Diameter: A measure of the size of an asteroid. It is the length of a line from a point on the surface, through the center of the asteroid, extending out to the opposite surface. Irregularly shaped asteroids may have different diameters depending on which direction they are measured.

Rotation Period: The time it takes for an asteroid to complete one revolution around its axis of rotation. For example, the rotation period of the Earth is approximately 24 hours, or 1 day.

Spectral Type: The classification of an asteroid, based on a measurement of the light reflected by the asteroid. 

Asteroid Terms: Explained

Watch live launch coverage of OSIRIS-REx to asteroid Bennu starting at 5:30 p.m, on NASA TV: http://www.nasa.gov/nasatv 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

“It’s Summer Camp for Aviation Geeks”: NASA Returns to EAA AirVenture Oshkosh

As a child fascinated with aviation, Michael Jorgensen, Public Affairs Specialist for the Electrified Powertrain Flight Demonstration project, attended EAA AirVenture Oshkosh (“Oshkosh” for short) multiple times. Now, he represents us there, sharing what we’ve been working on. Read on to see what going to Oshkosh is like as Michael takes us on a tour—and join us next time!

MICHAEL:

Every year, Wittman Regional Airport in the town of Oshkosh, Wisconsin, swells from 67,000 to 600,000 people, becoming a hotspot for aviation in the United States. The Experimental Aircraft Association (EAA) began AirVenture in 1953 and is a ‘Must Do’ for any aviation geek.

My story with EAA AirVenture began in the late 1990s. As a fan of everything aviation, and having grown up near Chicago, Oshkosh was always on my radar – and I attended several times while I was growing up.

Young Michael posing in front of a NASA aircraft at EAA Airventure 1998 in Oshkosh, WI. A young boy stands with his hands in his pockets in front of a white and blue emblazoned jet on a dark grey tarmac.
Adult Michael posing in front of a NASA aircraft at EAA Airventure 2022 in Oshkosh, WI. An adult man wearing a NASA t-shirt stands in front of a white and blue emblazoned propeller plane on a green patch of grass.

Michael recreates a childhood image from EAA AirVenture 1998 at EAA AirVenture 2022. Credit: Michael Jorgensen

Coming back to the airport grounds this week, all my childhood memories came flooding back: the noises, the planes, the smells, and the pure excitement. As a kid, I could only dream of working for NASA, never imagining it would come true almost 25 years later.

A large hexagonal airport traffic control tower at Wittman Regional Airport. The structure of the tower is tan and the background of the image is clear blue skies with two aircraft flying overhead.

The airport traffic control tower at Wittman Regional Airport at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

When driving in, you first see a lot of air traffic – ranging from hang gliders, to old warbirds, to stunt planes, to the newest military jets rumbling skyward. During the last full week in July, the airport control tower becomes the busiest one in the world, coordinating approximately 116 takeoffs/landings per hour throughout each day – almost 2 every minute! Last year saw more than 10,000 aircraft arrive at the airport. The excitement grows as you pull off the highway and are greeted by rows and rows of general aviation aircraft as far as the eye can see.

Hundreds of brightly colored aircraft are arranged in rows on a large grass field. Under the wings of each aircraft are small tents ranging in colors from yellow and green to grey.

The airport field at Wittman Regional Airport, featuring general aviation aircraft and camping tents, at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

The constant propeller buzz in the background and crackling of fighter jets overhead is noticeable as you walk through the airport grounds. What makes this sight even more unique is camping tents under the wings of each aircraft, stretching along the entire grounds of the airport. AirVenture truly is a summer camp for #AvGeeks.

A large crowd of plane enthusiasts is pictured in the foreground walking around and into a large grey military style transport aircraft on display. The nose of the aircraft is opened vertically allowing for the crowd to walk into its interior.

Boeing Plaza, the central display area at AirVenture, featuring a C-5 Galaxy transport with its nose open, and a C-17 Globemaster III, at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

The main tarmac at the airport is converted into Boeing Plaza, the central display area featuring the biggest and most exciting aircraft: C-17 Globetrotter III, SR-71 Blackbird, F-117 Nighthawk, DC-3, and many, many more. One year, I even got to see the Concorde fly into and out of this teeny regional airport in the middle of Wisconsin.

There are countless opportunities to interact with the pilots and other aviation enthusiasts including sitting in cockpits, checking out the interiors and exteriors of various airplanes, and chances to fly in vintage aircraft including an original 1929 Ford Trimotor and a B-17 Flying Fortress from 1945. And, of course, no matter my age, I posed with anything and everything I found interesting, including a T-38 Talon stationed in front of the NASA pavilion and the inside of an ecoDemonstrator.

A man wearing a NASA t-shirt sits in a plane cockpit. The cockpit is a metallic grey and covered in hundreds of knobs, throttles, and buttons with two large windows looking forward towards the nose of the plane.

Michael sitting in the cockpit of Boeing’s 777-200ER ecoDemonstrator at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

Inside the various hangars are hundreds of aviation vendors, exhibitors, and storefronts, ranging from avionics manufacturers to social clubs/societies, wooden model companies, and all the pilot accessories imaginable.

A man in a NASA polo shirt and lanyard takes a selfie in front of a white and blue emblazoned NASA aircraft and a large building with the red white and blue NASA logo imprinted on it.

Michael standing in front of NASA’s SR22 aircraft at the NASA pavilion at EAA AirVenture 2022 in Oshkosh, WI. Credit: Michael Jorgensen

This year’s theme for the NASA pavilion was “Faces of Flight”. Throughout the week, we had meet-and-greets with leaders, researchers, engineers, and even an astronaut or two, hands-on educational experiences for guests of all ages, giveaways, and models of our aircraft, spacecraft, and more, including a model of the Ingenuity Mars Helicopter and the Space Launch System rocket.

Aside from the events in the NASA pavilion, we participated in a number of panels like Women@NASA, where women leaders from the Aeronautics Research Mission Directorate talked about NASA’s aviation research portfolio, activities taking places at NASA centers, and their personal experiences as leaders.

If you’re interested in the future of aviation—supersonic flight, advanced air mobility, and so much more—come see us at Oshkosh!

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

Who Was Mary W. Jackson?

image

On June 24, 2020, NASA announced the agency’s headquarters building in Washington, D.C., was to be named after Mary W. Jackson, the first African American female engineer at NASA.

Jackson’s story — along with those of her colleagues Katherine Johnson, Dorothy Vaughan, and Christine Darden — was popularized with the release of the “Hidden Figures” movie, based on Margot Lee Shetterly’s book by the same name.

Today, as the accomplishments of these women are brought to light, we celebrate them as Modern Figures — hidden no longer. Despite their recent recognition, we cannot forget the challenges that women and BIPOC faced and continue to face in the STEM fields.

image

Background

Jackson showed talent for math and science at an early age. She was born in 1921 in Hampton, Virginia, and attended the all-Black George P. Phenix Training School where she graduated with honors. She graduated from Hampton Institute (now Hampton University) in 1942 with a bachelor of science degree in both mathematics and physical sciences.

Jackson worked several jobs before arriving at the National Advisory Committee on Aeronautics (NACA), the precursor organization to NASA. She was a teacher, a receptionist, and a bookkeeper — in addition to becoming a mother — before accepting a position with the NACA Langley Aeronautical Laboratory’s segregated West Area Computers in 1951, where her supervisor was Dorothy Vaughan.

image

Accomplishments 

After two years in West Computing, Jackson was offered a computing position to work in the 4-foot by 4-foot Supersonic Pressure Tunnel. She was also encouraged to enter a training program that would put her on track to become an engineer — however, she needed special permission from the City of Hampton to take classes in math and physics at then-segregated Hampton High School.

She completed the courses, earned the promotion, and in 1958 became NASA’s first African-American female engineer. That same year, she co-authored her first report, “Effects of Nose Angle and Mach Number on Transition on Cones at Supersonic Speeds.” By 1975, she had authored or co-authored 12 NACA and NASA technical publications — most focused on the behavior of the boundary layer of air around an airplane.

image

Legacy

Jackson eventually became frustrated with the lack of management opportunities for women in her field. In 1979, she left engineering to become NASA Langley’s Federal Women’s Program Manager to increase the hiring and promotion of NASA’s female mathematicians, engineers, and scientists.

Not only was she devoted to her career, Jackson was also committed to the advancement of her community. In the 1970s, she helped the students in the Hampton King Street Community Center build their own wind tunnel and run experiments. She and her husband Levi took in young professionals in need of guidance. She was also a Girl Scout troop leader for more than three decades.  

Jackson retired from Langley in 1985. Never accepting the status quo, she dedicated her life to breaking barriers for minorities in her field. Her legacy reminds us that inclusion and diversity are needed to live up to NASA’s core values of teamwork and excellence.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago
image

Thank you for joining the #CountdownToMars! The Mars Perseverance Answer Time with expert Chloe Sackier is LIVE!

Stay tuned for talks about landing a rover on Mars, Perseverance's science goals on the Red Planet, landing a career at NASA and more. View ALL the answers HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Planets: As Seen by Voyager

The Voyager 1 and 2 spacecraft explored Jupiter, Saturn, Uranus and Neptune before starting their journey toward interstellar space. Here you’ll find some of those images, including “The Pale Blue Dot” – famously described by Carl Sagan – and what are still the only up-close images of Uranus and Neptune.

These twin spacecraft took some of the very first close-up images of these planets and paved the way for future planetary missions to return, like the Juno spacecraft at Jupiter, Cassini at Saturn and New Horizons at Pluto.

Jupiter

image

Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. They took more than 33,000 pictures of Jupiter and its five major satellites. 

image

Findings:

Erupting volcanoes on Jupiter's moon Io, which has 100 times the volcanic activity of Earth. 

Better understanding of important physical, geological, and atmospheric processes happening in the planet, its satellites and magnetosphere.

Jupiter's turbulent atmosphere with dozens of interacting hurricane-like storm systems.

Saturn

image

The Saturn encounters occurred nine months apart, in November 1980 and August 1981. The two encounters increased our knowledge and altered our understanding of Saturn. The extended, close-range observations provided high-resolution data far different from the picture assembled during centuries of Earth-based studies.

image

Findings:

Saturn’s atmosphere is almost entirely hydrogen and helium.

Subdued contrasts and color differences on Saturn could be a result of more horizontal mixing or less production of localized colors than in Jupiter’s atmosphere.

An indication of an ocean beneath the cracked, icy crust of Jupiter's moon Europa. 

Winds blow at high speeds in Saturn. Near the equator, the Voyagers measured winds about 1,100 miles an hour.

Uranus

Planets: As Seen By Voyager

The Voyager 2 spacecraft flew closely past distant Uranus, the seventh planet from the Sun. At its closest, the spacecraft came within 50,600 miles of Uranus’s cloud tops on Jan. 24, 1986. Voyager 2 radioed thousands of images and voluminous amounts of other scientific data on the planet, its moons, rings, atmosphere, interior and the magnetic environment surrounding Uranus.

image

Findings:

Revealed complex surfaces indicative of varying geologic pasts.

Detected 11 previously unseen moons.

Uncovered the fine detail of the previously known rings and two newly detected rings.

Showed that the planet’s rate of rotation is 17 hours, 14 minutes.

Found that the planet’s magnetic field is both large and unusual.

Determined that the temperature of the equatorial region, which receives less sunlight over a Uranian year, is nevertheless about the same as that at the poles.

Neptune

Planets: As Seen By Voyager

Voyager 2 became the first spacecraft to observe the planet Neptune in the summer of 1989. Passing about 3,000 miles above Neptune’s north pole, Voyager 2 made its closest approach to any planet since leaving Earth 12 years ago. Five hours later, Voyager 2 passed about 25,000 miles from Neptune’s largest moon, Triton, the last solid body the spacecraft had the opportunity to study.

image

Findings: 

Discovered Neptune’s Great Dark Spot

Found that the planet has strong winds, around 1,000 miles per hour

Saw geysers erupting from the polar cap on Neptune’s moon Triton at -390 degrees Fahrenheit

Solar System Portrait

This narrow-angle color image of the Earth, dubbed ‘Pale Blue Dot’, is a part of the first ever ‘portrait’ of the solar system taken by Voyager 1. 

image

The spacecraft acquired a total of 60 frames for a mosaic of the solar system from a distance of more than 4 billion miles from Earth and about 32 degrees above the ecliptic.

image

From Voyager’s great distance, Earth is a mere point of light, less than the size of a picture element even in the narrow-angle camera.

image

“Look again at that dot. That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives.” - Carl Sagan

Both spacecraft will continue to study ultraviolet sources among the stars, and their fields and particles detectors will continue to search for the boundary between the Sun's influence and interstellar space. The radioisotope power systems will likely provide enough power for science to continue through 2025, and possibly support engineering data return through the mid-2030s. After that, the two Voyagers will continue to orbit the center of the Milky Way.

Learn more about the Voyager spacecraft HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

On Monday, August 21, 2017, our nation will be treated to a total eclipse of the Sun. The eclipse will be visible – weather permitting – across all of North America. The entire continent will experience at least a partial eclipse lasting two to three hours. Halfway through the event, anyone within a 60 to 70 mile-wide path from Oregon to South Carolina will experience a total eclipse. During those brief moments when the moon completely blocks the Sun's bright face for 2+ minutes, day will turn into night, making visible the otherwise hidden solar corona, the Sun's outer atmosphere. Bright stars and planets will become visible as well. This is truly one of nature's most awesome sights. The eclipse provides a unique opportunity to study the Sun, Earth, Moon and their interaction because of the eclipse's long path over land coast to coast.

Scientists will be able to take ground-based and airborne observations over a period of about 90 minutes to complement the wealth of data provided by NASA assets.

Watch this and other eclipse videos on our YouTube channel: https://youtu.be/8jaxiha8-rY?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi

To learn all about the 2017 Total Eclipse: https://eclipse2017.nasa.gov/

Music credit: Ascending Lanterns by Philip Hochstrate

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

What You Didn’t Know About Scott Kelly and Living in Space (Floating Urine is Involved)

First Ever NASA Reddit AMA from Space Recap

image

NASA astronaut Scott Kelly hosted a Reddit Ask Me Anything on Jan. 23 where people, well, asked him anything.

Kelly answered a range of questions from whether the crew members play space pranks on one another ("Occasionally…" Kelly said without elaboration.) to whether Kelly's recovery plan will be different than normal ("I think my rehab plan is the same as if I were here for 6 months, but I'm not positive.").

To start off, here are a few quick facts we learned about Kelly during the AMA:

The advice he would've given himself before going into space on day 1 would be to pack lighter.

His favorite David Bowie song is "Modern Love," and his favorite non-space related movie is "The Godfather." 

He uses a Nikon D4 when taking pictures (camera settings and lenses vary).

He thought it was cool to watch the movie "Gravity" while he was on the space station, because that's where the movie took place.

Once he lands, Kelly will miss the challenge of being aboard the space station the most.

Here are a few fun questions that astronaut Scott Kelly answered:

What’s the creepiest thing you’ve encountered while on the job?

image

Could a rogue spaceship sneak up on the space station?

image

We finally got an answer for one thing so many of you have been curious about…why does Scott Kelly always fold his arms?

image
image

When astronauts go up to space, they experience something very few others have and see Earth from a very unique perspective. What’s one thing Kelly will do differently once he returns home?

image

Kelly also told one user something unusual about being in space that people normally don’t think about: feet calluses.

image

Another user wanted to know what the largest societal misconception about space/space travel is. According to Kelly, it has nothing to do with science.

image
image
image

To read the entire Reddit AMA with Kelly, visit his IAmA thread.

Kelly's #YearInSpace ends Mar. 2. Follow him until the end of the journey (and beyond) on Twitter, Instagram and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • knwtqm
    knwtqm liked this · 2 years ago
  • emily-mature763000-blog
    emily-mature763000-blog liked this · 3 years ago
  • crylittlebird
    crylittlebird liked this · 4 years ago
  • aureliamorningstar24
    aureliamorningstar24 liked this · 4 years ago
  • thot-in-this-economy-blog
    thot-in-this-economy-blog liked this · 5 years ago
  • but-youre-so-old
    but-youre-so-old liked this · 5 years ago
  • wildellk
    wildellk liked this · 5 years ago
  • constellationsoftheheartt
    constellationsoftheheartt liked this · 5 years ago
  • cloudburstproblem
    cloudburstproblem liked this · 6 years ago
  • manik-rahman-blog
    manik-rahman-blog liked this · 6 years ago
  • pyatu
    pyatu reblogged this · 6 years ago
  • pyatu
    pyatu liked this · 6 years ago
  • moondelights
    moondelights reblogged this · 6 years ago
  • tehevilkittehuwu
    tehevilkittehuwu reblogged this · 6 years ago
  • skeptic42
    skeptic42 reblogged this · 6 years ago
  • dmitriwilliams
    dmitriwilliams reblogged this · 6 years ago
  • neoculturejae
    neoculturejae liked this · 6 years ago
  • tobinmars
    tobinmars reblogged this · 6 years ago
  • tobinmars
    tobinmars liked this · 6 years ago
  • manik-rahman-blog
    manik-rahman-blog reblogged this · 7 years ago
  • doggos-nature
    doggos-nature reblogged this · 7 years ago
  • th3d3m0nl0rdz3r0
    th3d3m0nl0rdz3r0 reblogged this · 7 years ago
  • th3d3m0nl0rdz3r0
    th3d3m0nl0rdz3r0 liked this · 7 years ago
  • muffinleader
    muffinleader liked this · 7 years ago
  • patricksyourfuckingdad
    patricksyourfuckingdad liked this · 7 years ago
  • dreametcher
    dreametcher liked this · 7 years ago
  • quality-binbag
    quality-binbag liked this · 7 years ago
  • candlesnclockwork
    candlesnclockwork reblogged this · 7 years ago
  • candlesnclockwork
    candlesnclockwork liked this · 7 years ago
  • art0lies
    art0lies liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags