(via Https://www.youtube.com/watch?v=TF76ITo3R1U)

(via https://www.youtube.com/watch?v=TF76ITo3R1U)

More Posts from 91001tv and Others

9 years ago

Carbon and Our Changing Climate

image

Carbon is the backbone of life on Earth. We are made of carbon, we eat carbon and our civilizations are built on carbon. We need carbon, but that need is also entwined with one of the most serious problems facing us today: global climate change.

Forged in the heart of aging stars, carbon is the fourth most abundant element in the Universe. Most of Earth’s carbon – about 65,500 billion metric tons – is stored in rocks. The rest is in the ocean, atmosphere, plants, soil and fossil fuels.

image

Over the long term, the carbon cycle seems to maintain a balance that prevents all of Earth’s carbon from entering the atmosphere, or from being stored entirely in rocks. This balance helps keep Earth’s temperature relatively stable, like a thermostat.

image

Today, changes in the carbon cycle are happening because of people. We disrupt the cycle by burning fossil fuels and clearing land. Our Orbiting Carbon Observatory-2 (OCO-2) satellite is providing our first detailed, global measurements of CO2 in the atmosphere at the Earth’s surface. OCO-2 recently released its first full year of data, critical to analyzing the annual CO2 concentrations in the atmosphere.

The above animation shows carbon dioxide released from two different sources: fires and massive urban centers known as megacities. The animation covers a five day period in June 2006. The model is based on real emission data and is then set to run so that scientists can observe how greenhouse gas behaves once it has been emitted.

image

All of this extra carbon needs to go somewhere. So far, land plants and the ocean have taken up about 55 percent of the extra carbon people have put into the atmosphere while about 45 percent has stayed in the atmosphere. The below animation shows the average 12-month cycle of all plant life on Earth (on land and in the ocean). Eventually, the land and oceans will take up most of the extra carbon dioxide, but as much as 20 percent may remain in the atmosphere for many thousands of years.

image

Excess carbon in the atmosphere warms the planet and helps plants on land grow more. Excess carbon in the ocean makes the water more acidic, putting marine life in danger. Forest and other land ecosystems are also changing in response to a warmer world. Some ecosystems – such as thawing permafrost in the Arctic and fire-prone forests – could begin emitting more carbon than they currently absorb. 

To learn more about NASA’s efforts to better understand the carbon and climate challenge, visit: http://www.nasa.gov/carbonclimate/.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago
NASA Awards Contract for Continued Operations of Jet Propulsion Lab
NASA has awarded a contract to the California Institute of Technology (Caltech) in Pasadena, California, to continue operations of the agency's Jet Propulsion Laboratory (JPL), also in Pasadena.

NASA has awarded a contract to the California Institute of Technology (Caltech) in Pasadena, California, to continue operations of the agency\'s Jet Propulsion Laboratory (JPL), also in Pasadena.

7 years ago

SpaceX Dragon breathes Astronomical Amounts of Science to Space Station

SpaceX is helping the crew members aboard the International Space Station get down and nerdy as they launch their Dragon cargo spacecraft into orbit for the 13th commercial resupply mission, targeted for Dec. 15 from our Kennedy Space Center in Florida. 

image

This super science-heavy flight will deliver experiments and equipment that will study phenomena on the Sun, materials in microgravity, space junk and more. 

image

Here are some highlights of research that will be delivered to the station:

ZBLAN Fiber Optics Tested in Space!

The Optical Fiber Production in Microgravity (Made in Space Fiber Optics) experiment demonstrates the benefits of manufacturing fiber optic filaments in a microgravity environment. This investigation will attempt to pull fiber optic wire from ZBLAN, a heavy metal fluoride glass commonly used to make fiber optic glass.

image

When ZBLAN is solidified on Earth, its atomic structure tends to form into crystals. Research indicates that ZBLAN fiber pulled in microgravity may not crystalize as much, giving it better optical qualities than the silica used in most fiber optic wire. 

Total and Spectral Solar Irradiance Sensor is Totally Teaching us About Earth’s Climate

The Total and Spectral Solar Irradiance Sensor, or TSIS, monitors both total solar irradiance and solar spectral irradiance, measurements that represent one of the longest space-observed climate records. Solar irradiance is the output of light energy from the entire disk of the Sun, measured at the Earth. This means looking at the Sun in ways very similar to how we observe stars rather than as an image with details that our eye can resolve.

image

Understanding the variability and magnitude of solar irradiance is essential to understanding Earth’s climate.  

Sensor Monitors Space Station Environment for Space Junk

The Space Debris Sensor (SDS) will directly measure the orbital debris environment around the space station for two to three years.

image

Above, see documentation of a Micro Meteor Orbital Debris strike on one of the window’s within the space station’s Cupola. 

Research from this investigation could help lower the risk to human life and critical hardware by orbital debris.

Self-Assembling and Self-Replicating Materials in Space!

Future space exploration may utilize self-assembly and self-replication to make materials and devices that can repair themselves on long duration missions. 

image

The Advanced Colloids Experiment- Temperature-7 (ACE-T-7) investigation involves the design and assembly of 3D structures from small particles suspended in a fluid medium. 

Melting Plastics in Microgravity

The Transparent Alloys project seeks to improve the understanding of the melting and solidification processes in plastics in microgravity. Five investigations will be conducted as a part of the Transparent Alloys project.

image

These European Space Agency (ESA) investigations will allow researchers to study this phenomena in the microgravity environment, where natural convection will not impact the results.  

Studying Slime (or…Algae, at Least) on the Space Station

Arthrospira B, an ESA investigation, will examine the form, structure and physiology of the Arthrospira sp. algae in order to determine the reliability of the organism for future spacecraft biological life support systems.

image

The development of these kinds of regenerative life support systems for spaceflight could also be applied to remote locations on Earth where sustainability of materials is important. 

Follow @ISS_Research on Twitter for more space science and watch the launch live on Dec. 15 at 10:36 a.m. EDT HERE!

For a regular dose of space-nerdy-goodness, follow us on Tumblr: https://nasa.tumblr.com/.

10 years ago

411@91001.tv

We consider local news programming a service to the community, and we take that responsibility extremely seriously. So we’re always looking at different ways to wrap technology around journalism to create more timely and compelling stories and videos for viewers. 

10 years ago
FACT: Black College Graduates Are More Than Twice As Likely To Be Unemployed. 

FACT: Black college graduates are more than twice as likely to be unemployed. 

FULL STORY: For Black Kids in America, a Degree Is No Guarantee 

10 years ago
#BlackDayOfSilence | #BLK2274 | TheTimeIsNow 

#BlackDayOfSilence | #BLK2274 | TheTimeIsNow 


Tags
6 years ago
Small Satellite Demonstrates Possible Solution for 'Space Junk'
The International Space Station deployed this small satellite for the NanoRacks-Remove Debris investigation, designed to demonstrate an approach to reduce the risks presented by orbital debris or "space junk."

The International Space Station deployed this small satellite for the NanoRacks-Remove Debris investigation, designed to demonstrate an approach to reduce the risks presented by orbital debris or 'space junk.'

9 years ago
IMG_1042 By Steven Bledsoe

IMG_1042 by Steven Bledsoe


Tags
8 years ago

Two New Missions to Explore the Early Solar System

We’ve got big science news…!

image

We’ve just added two more science missions to our lineup! The two selected missions have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 millions years after the birth of our sun.

image

The missions, known as Lucy and Psyche, were chosen from five finalists and will proceed to mission formulation.

Let’s take a dive into each mission…

Lucy

Lucy, a robotic spacecraft, will visit a target-rich environment of Jupiter’s mysterious Trojan asteroids. Scheduled to launch in October 2021, the spacecraft is slated to arrive at its first destination, a main asteroid belt, in 2025. 

image

Then, from 2027 to 2033, Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter’s gravity in two swarms that share the planet’s orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun. The Trojans are thought to be relics of a much earlier era in the history of the solar system, and may have formed far beyond Jupiter’s current orbit.

Studying these Trojan asteroids will give us valuable clues to deciphering the history of the early solar system.

Psyche

The Psyche mission will explore one of the most intriguing targets in the main asteroid belt – a giant metal asteroid, known as 16 Psyche, about three times farther away from the sun than is the Earth. The asteroid measures about 130 miles in diameter and, unlike most other asteroids that are rocky or icy bodies, it is thought to be comprised of mostly metallic iron and nickel, similar to Earth’s core.

image

Scientists wonder whether psyche could be an exposed core of an early planet that could have been as large as Mars, but which lost its rocky outer layers due to a number of violent collisions billions of years ago.

image

The mission will help scientists understand how planets and other bodies separated into their layers early in their histories. The Psyche robotic mission is targeted to launch in October of 2023, arriving at the asteroid in 2030, following an Earth gravity assist spacecraft maneuver in 2024 and a Mars flyby in 2025.

Get even more information about these two new science missions HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

8 years ago

(via https://www.youtube.com/watch?v=E6t1kxX-EpI)

91001tv - 91001.TV
91001.TV

Global IPTV Altadena

115 posts

Explore Tumblr Blog
Search Through Tumblr Tags